GF(P) - Galois Fields

Module 02 / Lesson 04

Video Tutorial


What is GF(P)?

GF(P) or Galois Field of prime order is a finite mathematical field containing exactly p elements (where p is a prime number). It provides a structured way to perform arithmetic within a finite set.

Key Components:

  • Prime number p
  • Set: {0, 1, 2, ..., p-1}
  • Modular Arithmetic
  • Closed algebraic operations

Core Rules:

  • All results are (mod p)
  • Every non-zero element has an inverse
  • Division uses multiplicative inverse

GF(5) Operation Examples:

Addition: 3 + 4 = 7 mod 5 = 2
Multiplication: 3 * 4 = 12 mod 5 = 2
Inverse: Since (2 * 3) mod 5 = 1, then 3 is the inverse of 2


Python GF(P) Operations

def gf_op(a, b, p, op):
    if op == '+': return (a + b) % p
    if op == '-': return (a - b) % p
    if op == '*': return (a * b) % p
    if op == '/':
        # Modular inverse using pow(base, exp, mod)
        # In GF(p), a^(-1) = a^(p-2) mod p
        inv = pow(b, p - 2, p)
        return (a * inv) % p

# Example: In GF(5)
p = 5
print(f"3 + 4 in GF(5): {gf_op(3, 4, p, '+')}") # Result: 2
print(f"Division 1 / 2 in GF(5): {gf_op(1, 2, p, '/')}") # Result: 3